Locally compact products and coproducts in categories of topological groups Academic Article uri icon

abstract

  • In the category of locally compact groups not all families of groups have a product. Precisely which families do have a product and a description of the product is a corollary of the main theorem proved here. In the category of locally compact abelian groups a family {Gj; j ∈ J} has a product if and only if all but a finite number of the Gj are of the form Kj × Dj, where Kj is a compact group and Dj is a discrete torsion free group. Dualizing identifies the families having coproducts in the category of locally compact abelian groups and so answers a question of Z. Semadeni.

publication date

  • December 1977